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T H E O R E T I C A L  M O D E L I N G  O F  S Y S T E M S  
OF C O M B I N E D  T H E R M A L  P R O T E C T I O N  

A. P. Kuryachii UDC 532.516+536.423.1 

Based opt a numerical solution of conjugate boundary, problems that describe the processes of  heat and 

mass transfer in two systems of thermal protection of  the radiation-evaporation ~pe, the efficiencies of 
these systems are compared. 

Introduction. The principle of operation of  systems of combined thermal protection (SCTPs) was pro- 
posed for the first time in [I]. The currently developed SCTPs are meant for protection of promising aircraft 
against intense and prolonged aerodynamic heating. The basic element of  the systems considered below is the 
external heat-resistant shield that takes up intense aerodynamic loads and is overlain by the layer of high-tem- 
perature heat insulation and the layer of material saturated with a coolant (water) and mounted on the outer 
surface of the protected structure. 

In developing SCTPs, the creation of mathematical models that describe rather complex processes of 
heat and mass transfer in different parts of the systems under consideration is of significance. This theoretical 
modeling makes it possible to evaluate the effect of the basic parameters of the systems on their overall-dimen- 
sion-weight characteristics and to optimize on this basis the required experimental investigations [2]. The radia- 
tion-evaporation method of thermal protection can be realized in systems that are different in structural 
complexity and efficiency [1-4]. In this work, consideration is given to two combined systems of thermal pro- 
tection, whose schematic diagrams are described below. 

Diagrammatic Representation of an SCTP.  It is assumed that the structure protected against external 
heating has the shape of a plane plate with the thickness hw, and the density and specific heat of  material Pw 
and cw. The layer of coolant-saturated material is arranged on the outer surface of the plate. Consideration is 
given to the individual segment of the thermal protection system of the total length 2L, at the center of which 
is the origin of the Cartesian coordinate system with the x axis perpendicular to the plate and directed toward 
the external heat flux. Since the heat and mass transfer and phase transitions in the coolant carrier are not 
considered in the present formulation of the problem, the origin of the x axis is located on the outer surface of 
the coolant carrier, which is considered to be the evaporation surface as shown in Fig. 1. 

The inner surface of a plane layer of porous heat insulation is at the distance xl from the evaporation 
surface. The thickness of this layer is equal to hi = x 2 -  Xl, where x2 is the coordinate of its outer surface. A 
thermally thin external plane shield is arranged at the distance x3 from the evaporation surface. This shield is 
produced of heat-resistant material and serves to protect the porous heat-insulation layer against intense aero- 
dynamic loads. The unsteady external heat flux qe(t) arrives at the shield. In the SCTP, just as in passive ra- 
diation thermal protection, the major portion of the heat flux qe(t) is reflected into the ambient medium by the 
radiation from the surface of the shield heated to a high temperature Te(t). Unlike the passive system, the por- 
tion of the external heat flux that penetrates through the heat-insulation layer is expended mainly on the phase 
transitions of the coolant. 

In the first system under consideration shown in Fig. la, a thin sheet reflector that ensures gastightness 
of the porous layer and a high heat resistance of the gap 0 < x < xl due to the small emittances of the reflector 
surface es is mounted on the inner surface of the insulation layer. The coolant evaporates into a plane channel 
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Fig. 1. Schematic diagrams of thermal protection systems: a) with the in- 
ternal sheet reflector (system l); b) with a vaportight layer of heat insula- 
tion (system 2). 

formed by this sheet reflector and an open surface of the coolant carrier. The channel has the axis of  symmetry 
at y = 0. Both ends of  the channel converge, terminating in slits of width 6 that model the real drainage system 
of the SCTP. The vapor flows out of  the channel into the ambient medium with the pressure pe(t). In the 
second variant of the SCTP shown in Fig. lb, the internal sheet reflector is absent. The coolant vapor flows 
through the porous layer of  heat insulation into the channel between this layer and the external heat-resistant 
shield, then flows outward. Below, the first variant of the combined system of thermal protection will be re- 

ferred to as system 1, while the second variant will be called system 2. 
Formulat ion of  the Problem of Heat  and Mass Transfer .  In the present work, we consider as a 

high-temperature heat insulation a slab of superthin quartz fiber with density Pi, specific heat ci, and effective 
thermal conductivity ~ that includes all three components of  heat transfer: the heat conduction of a solid ma- 
trix, the radiation of  a porous medium, and the heat conduction of a gas with the prescribed external pressure. 
Radiation heat transfer in semitransparent thermal protective materials can be evaluated with a sufficient degree 
of accuracy in the Rosseland approximation. The heat conduction of the gas can be approximated with the aim 
of allowing for its dependence on the pressure, the temperature, and the diameter of the fibers [5]. In modeling 
system I, the pressures both in the porous insulation and in the gap between it and the external shield are 
assumed to be equal to the external pressure. By analogy with [5], use is made of the formulas for the effective 

themlal conductivity and the specific heat of the quartz slab that are obtained based on interpolation of experi- 
mental data: 

~'i (Zi)= 1.076. 10-2+6.109 • 10-5(,100) +~.g W / ( m .  K),  

- 1  

?~g ~, 1 + z ~.o) -1 
(1) 

..2/3 
~'a=2"1 • 10 -3 l i  

T i + 1 2 2 '  Da =7"2"10  -4~.a, 

l = 1.255 - -  r ~ ,  ci (Ti) = 32.13 + 1.91T i -  7.19. 10 -4 ~ J / (kg .  K) .  
P~ -,/R,y, 

Here Ti is the insulation temperature; Xa, ~a, Pa, and R a are the thermal conductivity, dynamic-viscosity factor, 
density, and gas constant of  the air; Pi0 is the density of  fiber material; 1 is the mean free path of  the air 
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molecules; ~ is the accommodation coefficient; A is the average pore width. The best agreement with the avail- 
able experimental data is obtained for the following values of  the indicated parameters: Pi = 140 kg/m 3, Pi0 = 
2650 kg/m 3, ~ = 0.9, Z = 9.5, and A = 5-10 -5 m. 

We assume that the heat-insulation condition is fuifulled at y = +_L, and that changes in the external- 
shield temperature and the ambient pressure along the fragment of the thermal protection system of the length 
2L can be disregarded. Heat transfer in the insulation layer of  system 1 is modeled within the framework of an 
ordinary heat conduction equation in the one-dimensional approximation with the use of  the effective thermal 

conductivity (1). 
Flow in the vapor-discharge channels of both thermal protection systems under consideration is sym- 

metric relative to the line y = 0. It is also assumed that the geometric parameters of  the systems satisfy the 

relations 

<< 1 , << 1 , << 1 . (2) 

When conditions (2) are fulfilled the flow in the vapor-discharge channels is described by the system 
of Prandtl equations [6]. The characteristic velocity components across and along the channel are evaluated, 
respectively, by the expressions [4] 

, ~ r - -  . * * L ( 3 )  
u = - ~ q R v T  , v = u  - - .  

X 1 

Under the assumptions (2) made, the component of  the gas velocity v and the pressure gradient along 
the channel are linear functions of  the y coordinate while the remaining parameters of  flow in the main ap- 
proximation are independent of  y [7]. The tbrmulation of the problem and the computational method tbr un- 
steady flow of a vapor-air mixture when conditions (2) are fulfilled are described in [4] in detail. Here we only 
note that, to determine the components of the vapor-air mixture velocity, the mass concentration of the air, the 
pressure, temperature, and density of the mixture, and the second derivative of  the pressure along the channel, 
use is made of the continuity, momentum, energy, and air-diffusion equations and the equation of state of the 
vapor-air mixture, the condition of equality of the flow rate in the cross section y = L to the flow rate through 
the drainage slit, and the condition of equality of the vapor pressure on the evaporation surface to the satura- 
tion pressure at its temperature. The unsteady conjugate boundary problem of calculating the minimum weight 
of system 1 tor prescribed qe(t) and pe(t)  is also formulated in [4]. 

We present below a physical-mathematical model of  system 2, whose schematic diagram is shown in 
Fig. lb. This variant of thermal protection combines the features of radiation, evaporation, and transpiration 
systems. Consideration is given to three basic regions of  system 2: evaporation cavity (1), porous-insulation 
layer (2), and vapor-discharge channel (3). The vapor pressure in the indicated regions is denoted subsequently 

as Pt, P2, and P3. 
The boundary problem that describes the heat and mass transfer in the evaporation region and the heat 

insulation is formulated in a one-dimensional approximation. Since the heat capacity of the vapor per unit vo- 
lume is much lower than in the porous insulation the unsteady term in the energy equation of  the gas can be 
disregarded. It is also assumed that the hydrodynamic relaxation time of the flow t ,  = x 3 / u * ,  where the cha- 
racteristic flow velocity in the insulation u* is evaluated by expression (3), is small as compared to the charac- 
teristic time of heating of the entire system because of the external thermal action. Under these assumptions, 
vapor flow can be considered in a quasistationary approximation. 

The continuity and momentum equations yield that the vapor flux and the pressure are constant across 
the evaporation cavity. The first is equal to the evaporation rate, while the second is equal to the pressure of 
saturated vapor at the evaporation-surface temperature. The boundary condition on the evaporation surface 
given below reflects the fact that heating of the protected structure and evaporation of the coolant are due to 

43 



the supply of heat by the heat conduction of the gas phase and the radiation heat transfer between the surfaces 
of the coolant carrier and the porous insulation that is described within the framework of the model of  dif- 
fusely gray bodies. 

Thus, the heat and mass transfer equations with the corresponding boundary conditions in the evapora- 

tion cavity have the following form: 

4104 / 
pvu=j(t), pl=pvs(Tw)=133.4exp 18.681 T w _ 3 5 ) ,  

jCp dx - d x  v ~  , (4) 

dT w dT~ , 

X = 0 : ( p w c w h  w + mliqCliq) T + rj = X. v ~ + E10" (T~i 1 -- ? w ) ,  

EwE i 
e I -- 

Ew + £i -- EwEi 

Here j is the evaporation rate of  the coolant; Pv, @, £v, and Tv are the density, specific heat at constant pres- 
sure, thermal conductivity, and temperature of the vapor; Pvs is the pressure of the saturated vapor;  r = 

r 0 -  ( q i q -  cp)Tw is the vapor temperature; r0 is the heat of evaporation at 0 ° K; qiq and mli q are the specific 
heat and mass of the liquid coolant per unit area; Ei and Ti~ are the emittance and temperature of  the heat-in- 
sulation surface; ~w and Tw are the emittance and temperature of  the evaporation surface. 

Heat and mass transfer in the layer of heat insulation (region 2) is modeled with allowance for the 
interphase heat transfer and the difference of the vapor and porous-medium temperatures. The continuity equa- 
tion for region 2 yields that the vapor flux depends only on time. Vapor flow in the insulation is assumed to 

be slow and therefore is described by the Darcy equation 

K @2 (5) .i(t)= ~Pv& 

Under the assumption that the gas equation is fulfilled for the vapor, as a result of  integration of  Eq. 
(5) we find the distribution of the vapor pressure in the porous layer 

.1 /2  

t p ~ R v i  l (6) P2 (x, t) = -t - 2j -~ PvTvdx . 
X I 

The energy equation of the vapor with allowance for the interphase heat transfer has the form 

aTv a  Tv) 
jCpv ~ + SOt (T v - ri) = ~ v --~x ) '  (7) 

where s and Ot are the effective area per unit volume and the coefficient of convective heat transfer of  the 
porous medium. 

For simplification, all the quartz fibers that form the porous slab are assumed to have the shape of 
circular cylinders of constant diameter d and to be perpendicular to the x axis. In this case, the specific area of 
the inner surface of the porous body is evaluated as s = 4(1 -cp)/d, where ¢p is the porosity of  the slab. 

Convective heat transfer between the gas and the porous matrix is a complex process. To determine the 
coefficient Ot, use is usually made of the relationship between the local Nusselt number Nu = otdJ~.v and the 
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Reynolds number Red = pvud/gv  [8]. In the present work, for evaluation of the effective coefficient of heat 
transfer we took the correlation equation from [9] 

r ~1/4 

N U = ( 0 . 4 R  1/2 2/3 p ~ / 5 [ ~ v ( T v )  l 
e d +0.06Re d ) [ ~ J  " 

The energy equation of the heat-insulation layer and the corresponding boundary conditions have the 
following form: 

ar~ a ( ate3 
Pfi - -~-  + so~ ( T i -  Tv)= ~x [X,i-~x ) ,  

aT~ 

x :  x 2 :  = 
EiE e 

, lL 2 --  
E i + E e -- EiE e 

where ee is the emittance of the surface of the external shield. 
We note that only the radiation heat transfer between the surfaces of the insulation, the coolant carrier, 

and the extemal shield enters in the boundary conditions for the energy equation of the insulation (8) since the 
conductive and convective heat transfers in regions I and 3 are determined by the gas phase. The effective 
thermal conductivity of the insulation employed in solving (8) is determined by Eq. (1) without the last term 
since the convective heat transfer in region 2 is described by the energy equation of the vapor. 

As has been noted above, the longitudinal velocity component and the pressure gradient in the vapor- 
discharge channel with converging ends can be represented in the tbrm v = ym(t) and Op3/Oy = yF(t). In this 
case, the energy, continuity, and momentum equations that describe vapor flow in region 3 are represented in 
a quasistationary approximation as 

PvUCp air - dx ~'v ~ ; x = x 3: T v= T e, 

p v u = j - i P v W d X ;  x = x 3" u = O , 
X, 

(9) 

dw " + F  d ( d w )  
PvU--~-+pvw- =~x / ,~ - -~ r ) ;  x = x 2 , x 3 :  w = 0 .  

The condition of equality of the flow rate of the coolant to the flow rate of the vapor through the 
drainage slit, for which use is made of the formulas of adiabatic escape of the gas from the cavity 

-~/2 F ( 2 "~(T+I)(T-I)T/2 
F~P3 (R v (Tv)) Q(It) = j L ,  F = [ y / ~ S - i -  j J , 

= ( ~ "  2 < ¢ / ( ~ l )  
QUt)= l rt Pe < ~, = I --'-7--71 , (10) 

' P3 tY +,) 
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Fig. 2. Evaporation rates o f  the coolant as functions of  heat-insulation 

thickness: in system 2 (1) and in system 1 for Es = 0.3 (3). j, kg/(m2-sec); 

hi, m .  

Q (/t) /~- , j  (1 - rt (~-')/r) , x > x , ,  

x, ] 

where 7 = 1.3 is the adiabatic exponent of the water vapor and (Tv) is the average vapor temperature across 
the channel, serves to determine the second derivative of pressure along the channel F. 

The transfer coefficients of the vapor are computed by the formulas obtained by numerical interpolation 
of tabulated data [10]: 

k v (T) = ( -  5.g + 0.0856T) • 10 -3 W / ( m .  K) ,  

I1 v (T) = ( -  3.05 + 0.04067") • 10 -6 k g / ( m  •sec) .  

The formulated boundary problem (4)-(10) enables us to calculate the unknown functions o f  j,  p, Pv, 
Tv, Ti, u, w, and F that describe the processes of  heat and mass transfer in the system o f  thermal protection 

under consideration. 
It is necessary to note that in modeling actual thermal actions on the aircraft the situation where the 

initial total pressure of the air and the vapor in the thermal protection system that is equal to the external 

pressure will exceed the pressure o f  saturated vapor at the initial temperature o f  the system, i.e., P0 >Pvs(T0), 
will be typical. The analysis of  flow of  a vapor-air mixture in a vapor-discharge channel made  in [4] shows 

that as long as the air is present in the channel the evaporation rate is much lower than its value on removing 
completely the air from the channel. Therefore when the external thermal action is rather prolonged we can 

disregard the total flow rate o f  the coolant during the initial stage o f  heating of  the thermal protect ion system. 

On this basis, it is assumed in the model proposed that as long as the external pressure exceeds the 

pressure of  saturated vapor at the evaporation-surf'ace temperature during the unsteady stage o f  heating the 
pressure in all parts of  the system is equal to the external pressure and the evaporation rate is zero. This as- 

sumption holds true until the evaporation-surface temperature attains the value at which the condi t ion pvs(Tw) 
>pe(t) is fulfilled. From this point on, problem (4)-(10) is solved without any additional simplifications. 

Compar i son  of  T he rm a l  Pro tec t ion  Systems. Based on the models presented above and in [4] we 

calculated the heat and mass transfer in the systems under consideration for the following fixed values of  the 

parameters: L = 0.5 m, :q = 0.01 m, x 3 - x 2  = 0.005 m, ~5 = 5.10 -~ m, hw = 0.002 m, 9w = 2800 kg/m 3, Cw = 
900 J/(kg.K), Ee.i.w =0.8, go = 0.9, K = 10 -12 m 2, and d = 2-10 -4 m. The temperature o f  the external shield and 

the ambient pressure varied linearly with time from the initial values To -- 290 K and P0 = 105 Pa to the 

limiting values T e m a x  = 1500 K and Pemin = 500 Pa and thereafter remained constant. 
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Fig. 3. Pressures in the evaporation cavity (1) and the external channel (2) 
of system 2 and in the vapor-discharge channel of  system 1 as functions 

of heat-insulation thickness for es = 0.1 (3) and es = 0.8 (4). p, Pa. 

Figure 2 presents the steady-state evaporation rates of the coolant as functions of the thickness of  the 
insulation layer. Here curve 1 corresponds to system 2, curve 2 presents the results for system l, in which the 
emittance of the internal sheet reflector is ~s = 0.1, and curve 3 corresponds to ~s = 0.8. The substantially 
lower flow rate of the coolant in system 2 is associated with the use of  the principle of  a transpiration system. 
In heating the vapor to the external-shield temperature, the heat capacity of  the vapor is used in addition to the 
heat of  evaporation of the coolant. Figure 2 also shows a significant effect of the emittance of the sheet reflec- 
tor in system 1. Interestingly, the ratio of the evaporation rates j2/./'l (system 2/system 1) is nearly constant and 
is equal to 0.46 in the considered range of variation in the slab thickness for a high emittance of the sheet 
reflector Es = 0.8 in system 1. When es = 0.1 this ratio decreases as the slab thickness decreases: j2/jl = 0.75, 
0.66, and 0.61 tbr h i = 1, 2 ,  and 3 cm, respectively, i.e., the efficiency of system 2, as compared to system I, 
increases with insulation thickness. 

We note that the minimum total weight of  the radiation-evaporation thermal protection mr---19ihi +jAt 
(where At is the duration of  the thermal action) is attained when the masses of the insulation layer m i = pih i  

and the initial supply of the coolant rnliq0 = j ~ t  are approximately equal [3, 4]. It follows that the ratio of  the 
minimum masses of the systems under consideration is evaluated from the ratio of the evaporation rates of  the 
coolant in them. 

Another important parameter of the systems of combined thermal protection is the pressure difference 
on the insulation layer. For concrete thermal protective materials and concrete regimes of flight of the aircraft, 
this parameter can turn out to be a limiting factor of the maximum permissible insulation thickness in optimiz- 

ing the overall dimension and weight of the system under consideration. The effect of the heat-insulation thick- 
ness on the levels of steady-state pressure in the cavities of the considered systems is shown in Fig. 3. Here 
curves l and 2 present the pressure in the evaporation cavity and the external channel of system 2, while 
curves 3 and 4 present the pressure in the vapor-discharge channel of  system l tbr the emittances of  the sheet 
reflector e~ = 0.1 and 0.8, respectively. 

With the prescribed temperature of the external shield and ratio 8/L in both systems of combined ther- 
mal protection the pressure in the vapor-discharge channel is governed by the evaporation rate related to the 
vapor flow rate through drainage slits. Therefore the pressure difference on the insulation layer decreases as its 
thickness increases in system 1 (the pressure in the gap between the insulation layer and the external shield is 
equal to the external pressure). In system 2, in spite of the strong dependence of the evaporation rate (and the 
pressure in the external channel) on the slab thickness, the pressure of saturated vapor in the evaporation cavity 
changes slightly because of the small temperature change of the evaporation surface. Therefore the pressure 
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decrease in the extemal channel as a result of the increase in the slab thickness leads to an increase in the 
pressure difference on the insulation layer. 

Conclusion. The mathematical models of  combined systems of  thermal protection proposed make it 
possible to calculate their basic characteristics, in particular, the temperature distributions, the evaporation rate 
of the coolant, and the pressure difference on the insulation layer. It is shown that the system of thermal pro- 
tection, in which use is made of  filtration of the coolant vapor through the layer of  heat insulation, is more 
efficient than the system with a vaportight insulation layer. 

The work was carried out with financial support from the Russian Fund for Fundamental Research 
(grant No. 96-15-96063 of support of  the leading scientific schools). 

N O T A T I O N  

T, temperature; q, heat flux; t, time; j, vapor flux; 9, density; p, pressure; c, specific heat; 3., thermal 
conductivity; H, dynamic-viscosity factor; R, gas constant; r, specific heat of evaporation; e, emittance; or, Ste- 
fan-Boltzmann constant; x and y, coordinates; u and v, velocity components; w, longitudinal gradient of the 
vapor velocity directed along the vapor-discharge channel; K, permittivity; d, fiber diameter; 8, drainage-slit 
width; L, half-length of  the segment of  heat insulation; Nu, Nusselt number; Re, Reynolds number; Pr, Prandti 
number. Subscripts: v, vapor; i, heat insulation; w, evaporation surface; e, external medium; s, shield; g, gas; 
vs, saturafed vapor. 
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